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TtlE ~ALCU~T~ON OF STRONGLY NON~LINEAR SYSTEMS CLOSE 
TO VIBRATION IKPACT SYSTEIVIS * 

V.N. PILIPCFKJK 

A method of constructing periodic solutions in non-linear dynamic systems 
with a finite number of degreesoffreedom, which enables a solution to be 
found in the form of a series, from periodic piecewise smooth functions 
of a fairly- simple form is proposed. The approximate solution, which is a 
segment of the series, corresponds to replacing the initial system by a 
certain equivalent vibration impact system. As shown below, such an approach 
iS particularly effective in the least favourable cases fox quasiharmonic 
(quasilinear) analysis. In combination with averaging methods this approach 
can also be used to study mare complicated modes of motion. Some examples 
which are of independnet interest are discussed. 

1. First we consider a conservative system with one degree of freedom whose motion is 
described by the equation 

s** _r .f (J) = 0, E 5 R, (1.1) 

Here r(5) is the odd analytic function which satisfies the condition xf(z)>O. where 

equality occurs only at one point z = 0 (the system with a unique state of equilibrium); a dot 
denotes differentiation with respect to time t. 

The group properties of Eq.cl.1) enable us, without loss of generality, to consider this 
equation under the following initial conditions: 

t = (J, z = 0, jc' ZZ u 

Let P(q) be a sawtooth periodic piecewise smooth function with unit amplitude 

(1.2) 

P(r+3)=+arcsinjinFj, P(rp+4)=P(cP) 

A graph of such a function consists of joined straight-line segments, and it can therefore 
be calculated using simple arithmetic operations. 

The relations 
IX 

P'"((p)= 1, ~"(+2~_=3_[6(ip+ 1-4k)--@p-l--""& Cf.31 

--3o<(P<= 

hold within the scope of the theory of generalized functions. 
we shall seek the solution of the Cauchy problem ii.l), (X.2) in the form 

s =$ -!- XI (Q), li‘= AP (m), (r = L't A (1.4) 

with respect to the variable t, the solution period T is determined by the expression 

T = &l/v, ; for example, the parameter A and the function X are to be determined. 
On differentiating (1.4) twice with respect to r, and considering (1.3), we obtain 

X” = L.2_y - (v? / A) (1 ; X’) P (1.5) 

The acceleration in the system discussed should be limited, and for this reason we 

eliminate the second term in (1.5) by putting 

X,&-A = -1 (1.8) 

Because the function 21 = AP(q)is periodicand x'(q) is even, equal.ity (1.6) is satisfied 

at all points q = ~1 + 4k, k = O,&l,f2,.. . . Eq.tl.6) serves to determine the parameter A. 
Cn substituting (1.4) into the initial Eq.(l.l), and considering (I.5), (1.6) 8 we obtain 

the equation in X(q): 
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The corresponding initial conditions 

$ = 0, x = 0, X' = 0 ft.81 

follow from relation5 (1.2). 
We shall seek the solution of problem (1.71, (1.8) in the form of the series of successive 

approximations 

X =c X(1) + X'?) $ X(8) +. . . ., _4 = A(‘) + A(Z) + A(8) + .._ (1.9) 

On substituting the first series of (1.91 into (1.71, we obtain the sequence of equations 

XU,” = - f2f (q.), x’(2)” = - u-y (9) X(l) 

x_(3)” = _ y-2 p ($) x(2) + + f” ($) X”‘2] 3 . 1 . 

Hence, considering the initial conditions (1.8), we arrive at relations which by calcu- 
lating the quadratures, enable us to determine the terms of the first expansion (1.9). On 
integrating by parts the terms which contain the derivatives of the function f (.T)r we have 

'E* 
~(‘)=-~-z~sj(~)d~d~ (1.10) 

00 

On substituting the expansions (1.9) into (1.6), and expanding the 
2.. . ) in power series in the vicinity of the point +$= A(l), we obtain 
for determining the quantities A(j) (j = 1, 2,. . .) : 

A(3) = _ f -+- 
$1) 

X(I)‘“A(= + X’“‘A”’ T X(3”) ftcAflf, I , . 

Bearing in mind (l.lO), we can reduce the first of these equations 
A(1) 

S .f($')dq-= u? 
0 

derivatives Xc’)’ (i = 1, 
a chain of equations 

(1.11) 

to the form 

(1.12) 

Thus, the first term of the second expansion in (1.9) equals the oscillation amplitude 
which occurs if the given initial energy Is doubled. 

Note that relations (1.10) do not contain derivatives of the function f(d), . and con- 
structing an iteration procedure based on a simpler scheme generally enables us to avoid 
differentiation of this function, thereby removing the condition of analyticity imposed on it. 

For example, let 

Then the function X(K) for sufficiently large N will be an approximate solution of Eq. (1.7). 
As regards X(I) we have expression (l.l.0); however, inthe higher approximations the calculation 
of the quadratures appears to be much more complex than in (l.lO), and the result is less clear. 

Below we give examples of the singularities of the approach described. 

Example 1. Let f (rf m 2" , where n is an odd number. In this case for arbitrary n, 
problem (1.11, (1.2) can be solved with special functions of a quite complex form. We can 
arrive at simpler solutions for the analysis (even if approximate ones) in another way. Thus 
for small n, the quasiharmonic approach often gives a quite acceptable result which, by one 
means or another, includes a certain linearization of the initial system. However, if n is 
large, this approach appears to be unnatural. 

From this point of view, the limit case II= CO appears to be fundamentally complex, since 
to describe the impacts at the ends of the segment --1gr<i, strictly speaking, an infinite 
number of quasiharmonic approximations are required, 

At the same time this case is very simple because in the intervals between the impacts 
uniform motion with respect to inertia occurs, and in the wider class of functions the solution 
of the problem is 

+ = P ((o), cp = L‘t (1.13) 
We also note that, if relations (1.13) are regarded as a change of variable in (1.11, then 
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in the equation in the new variable q the singular functions which correspond to the impact 
interaction disappear, and the equation takes the form T"= 0, -DJ<~<z. The idea of using 
special functions (including the sawtooth) in calculating vibration impact systems is discussed 
in /l/. 

The above relations enable us to obtain an approximate solution for large but finite values 
of R. On performing the integration in (1.10), we find thesolution of the initial problem in 
the form of a power series, 

Regarding the parameter A in (1.11), we have 

(1.15, 

The series (1.14) and (1.15) are asymptotic: as n-m we obtain, as should be the case, 
relations (1.13): 

A - 1, x = J - A!$ - 0; d + P (1'1) 

In order to establish the convergence, we analyse the least favourable case ,G= 1 (an 
harmonic oscillator). For 11 = 1 , expressions !1.14) and (1.15) take the form 

thus restoring the solution of a linear equation represented in the form 

t = "sin T, T = I/* nP (Ztlrrj 

Unlike the usual form of notation ofa solution (I = v sin t) , the approximation of the 
function sinr by a segment of the pcwer series does not deprive it of the property of period- 
icity, transferred to the 'oscillating' time T, /T ( <n/z ; on the other hand, any finite segment 
of the series deprives the approximated function of the property of being smooth. The kinks 
inthe corresponding curve are smoothed with additional new terms of the series, and disappear 
for infinitely large numbers of terms only. At the kinks, the velocity function has disconti- 
nuities of the first kind which correspond to some fictitious impactsinthe system, However, 
for large n the approximation of rapid velocity jumps by discontinuities, and the impulses of 
force by instantaneous impulses is essential. Regarding a linear system, the.expansion of 
the sine with respect to the 'saw' in a power series is obviously insufficient to the same 
degree as is the expansion of the 'saw' in a Fourier series with respect to sines in the case 
of a vibration-impact system (Iz = W). 

Example 2. Consider the solution for an oscillator with a characteristic of the form 
f (z) = sh z. If in the process of integrating theequations we digress from the initial conditions 
for the derivatives X(')'(i = I,&. .), the single-parameter family of solutions of the initial 
equation can finally be obtained in the form 

The parameter V is connected with the initial velocity by the relation 

1 1 1 
"=r--TT4C.S 4vi"' J 

For sufficiently large v, the quantity V can be replaced approximately by the velocity 
1 , and as u-h? the asymptotic behaviour of (1.16) can be expressed as 

Thus , the system suffers impacts at the infinitely removed points += 2% reached LC 

an infinitely short time. 

2. Consider a conservative system with k i 1 degrees of freedom. To simplify the 

notation, we specially separate one of the coordinates, (L), and write the eqution of motion 

in the form 
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I” + f (I, Y) = 0, Y” + g (5, Y) = 0 (2.1) 
where Y denotes the aggregate k of the quantities Y,, Yz, . . . . Yk; g(z, Y) is the aggregate of the 

functions gi = gi (z, y,. yz, . . , yk) (i = 1, 2,. . ., k), which, together with f(x,y), are assumed to be 

analytic. 
Let the potential function U (x,Y) corresponding to (2.1) satisfy the symmetry condition 

U(X, y)= U(- x, 7 y), and in addition let the set I? = { (I, y): U(x, y) + h = 0) (h is the system's 
energy) represent a closed connected hypersurface in R’+’ on which the gradient of the function 

U(x, Y) vanishes nowhere (there are no 'stagnation' points). This hypersurface limits the 
configuration space of the motion which contains a state of equilibrium, in this case unique, 
i.e. the origin of coordinates. 

We shall seek the periodic solutionsuch thatat some instants of time all coordinates vanish 
simultaneously, and at some other instants all derivatives s’, y’ are zeros (oscillation in 
unison). The corresponding trajectory inconfiguration space has the form of a segment of a 
line with its ends onthe hypersurface r, which passes through the origin. The question of the 
existence of such solutions is discussed in /2/; a construction method exists for weakly curved 
trajectories in configuration space (see /3/). 

We shall write the initial condition corresponding to the solution discussedinthe form 

t = 0, z = 0, 2' = u, y = 0 (2.2) 

The relevant initial values of the velocitires y' are determined when constructing the 
solution which in this case we seekinthe form 

x = $ + X (II;), y = Y (q); $ = AP (vt I/ A) (2.3) 

where Y (I#) = {Y, ($), Y,($), . . ., Y, (9)). For g (x, y) z 0 we have y = 0, and the trajectory of 
the solution desired lies on the x-axis. The choice of this or any other axis for the initial 
approximation is made taking into account sufficient information, chiefly on the system's 
properties of symmetry. 

Let us substitute relations (2.3) into (2.1). Under the conditions 

I# = A, X' = -1, Y' = 0 (2.4) 

there are no 6-functionsin the expressions for the accelerations x" and y", and the equations 
in X and Y have the form 

$_y + f ($ + x, Y) = 0, u*E’” + g (l$ 7 x, Y) = 0 (2 , 

From the conditions imposed on z and a' in (2.2), we have the initial conditions for t? 
function X, 

$ = 0, x = 0, X' = 0 

The last relations in (2.2) and (2.4) yield the boundary conditions 

(L", 

$=O,I-=O;I$=A,Y'=O (2.7) 

As was discussed in Section 1, 
X' 

the parameter A is determined by the condition regarding 
in (2.4). 
On expanding the functions f and g in power series in the neighbourhood of the point 

(% 0) , and setting 
X =‘I$') T X"' + X(3) T . . .( y = yc') + y(c) + J'(Q) $ . . .; 

Y"'I=[Y:", .,.( YP') 

we obtain the following systems of equations: 

C?X(')" = - f ($, O), L.2yw = - g ($, 0) 

v?‘p)” = _ f,‘X”’ _ fylY(lJ, v’y”~” = _ gx’p _ g,yu 

v?&.p’” = _ f,‘_p _ f;Yw _ + f;,p _ f;,xq”” _ 

+(Y”‘_c)Zf 

szyCS)" _ - - g*~l@'_g,'y'* - + g;X(')* _g;y"#)y(l) _ $( Y(l) $ yg,... 

The symbol f,,’ denotes the vector of derivatives allay, (i = 1, 2,. .., k), and g,'the square 
matrix (1 Bg,/aYi II;aLl the derivatives of the functions f and g are calculated at the point($, 0). 

Separately, each of the functions X(l), X(z), . . . and Y(l), Ye),. . . 
and the boundary conditions (2.6) and (2.7), respectively. 

should satisfy the initial 

As an example, let us consider the solution for the following system with two degrees c 
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freedom: 

I" + sh z f v sh (z - y) = 0; y”+ sh y -+ y sh (Y -2) = 0 

In the main approximation the solution has the form 
I-1’ . . 

*=21_+ 7 (q - $11 1‘). y * (SII q - * ch A) 

$__iP($). Cll.1 I-6 

As G-CO, the relations 

ut J - 3 III rP (‘F), I ‘( - - z CT, I T -.- 2 

become valid. 

Since the system is symmetric, another solution of this kind can be obtained from the 
given solution by a simple change zzy. 

3. Consider a non-autonomous system with k degrees of freedom. Retaining the notation 
of Section 2, we write the equations of motion in the vector form: 

y" 1 R (Y) = q (l); q (l) = {q, (t). c/Z (t).. ., qk (t)) (3.1) 

where g(t) is an aggregate of periodic functions with period 4~~: q (t T 4~“) = q (1); q (0) =: 0, 
Let us intorduce the "oscillating time" 

T = T,,f' (1 To) 

Then, since the function q(f) is periodic, we have the equality 

(/ (i) = (/ (T). - 35 < f < a3 

We shall seek the perodic solution of (3.1) in the form 

y d-r - 1. (T): 1” IT ?, -= - A. A = {Al. AZ.. . . Ah.) 

where A are the constants which are to be determined. We obtain 

J-" -- p (‘4T :- 1') = q (z) 

Putting I- _ y111 A 1-l!) -C ., we arrive at a sequence of equations 

(Xl?, 

(3.3) 

j-,1,” = (, (T) - C (.‘iT). yc2”’ = -&‘)l”‘,. . (3. i) 

where the derivatives R,,' are computed for y =AT. In integrating these equations we choose 

the arbitrary constants so that the functions y('I(i = 1. 2.. .)do not contain a term linear in 

(it is allowed for, by the first expression in (3.2)), and so that they vanish for T = 0, 

An substituting the function Y thus obtained into the second relation of (3.2) , we obtain a 

system of equations in the quantities A, (j -7 1. 2.. .., k). 

EXdDple. Consider the system 

y," + B1 (Yl, YP’ = VT, Y2” - f2 (Yl, Yd = 0 

g, (yx, Y2) = g, (!I,. Y1) = Yin T Y (Y1 - Y2)” 

we find a solution of the type discussedin the form 

One of the solutions can be foundinthe form of the power series 

Notice that for PL= 1 (when the system is linear) the written part of Eq. (3.5) proves to 

be linear and yields the following expression for the resonance quarter-periods: 
T"Z = 2 (1 7-y + I))-' 

(the exact expression differs by a factor of .-r':Sl. 

4. Let us examine the case of parametric action. Suppose that the equation of motion 



has the form 

y" + [M - Q (01 g(y) + f (Y) = 0 (4.1) 

Here y, as before, is a vector of dimensions k; M and Q(t) are matrices of the k-th 

order, the elements of the latter being the n-periodic even functions; g(y) and f(y) are the _. 
k-dimensional vector-functions which satisfy the symmetry condition: g(Y)= - g(- Y), f(5) = 

-f(-5) * 
We shall seek the odd 2x-periodic solution in the form 

y=Ar + Y(t); W+P($) 

Under the condition 
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we have 

z = n/2, Y' = - A (4.2) 

Y" = - IM - Q (z)l g (AT + y) - f (AT + y) 
Y (0) = 0, Y’ (0) = 0; Q (T) = Q (t) 

These relations enable US to write, in the main approximation, the solution of the initial 
equation in the form 

Y=AT-~~l(M--Q)g(AT~+~~A~~~~~~~ (4.3) 

with the relation (4.2) yielding 
nlz 

1 [(M-Q)giAt)+f(Ar)ldr=A (4.4) 
0 

Example. Consider the following system with one degree of freedom: 

M = a = const, Q (t) = 2q cos zt, g (I) z z, f (I) s az” 

On carrying out the integration in (4.3) and (4.4) we obtain 

All.9 
z=AT- ~-_((eoi2r+1)1+~sin2r- 

&yl’2 .72 

(n j- 1) (a T “, ’ =_aiqi )I_‘ a (+)n+1.4n-1 = i 

For e#o, the last relation is considered as an equation in A; if a=0 (the Mathieu 
equation) we obtain the approximate expression connecting the eigenvaluea and the parameter 

9. 
5. In combinationwith averaging methods, the approximate solutions of the type described 

make it possible, comparatively simply, i.e. without recourse to complex special functions, 
to consider systems close to conserviatve in cases where the quasiharmonic approximation of 
the solution proves to be ineffective. 

We shall illustrate this by using the equation 

z" + @(I, z')+ shz = 0; g(r, I') E (br' - 1)~' 

as an example. 
Considering the asymptotic solutions for the case g(z,z')zO (see 1.17), 

t = AP (q), z' = e*!'P' (9); A _ to 

as the formulae for changing to the new variables A(t),q(t) for g(z,z')fO, we arrive at the 
equations 

A’ = _ ~e-“:2~ (AP, ,*‘?p,) P’, 
,A/2 

cp’ = 7 + q g (AP, e*'*q P 

We will restrict ourselves to the shortened system (see /4/) 

A ++), ,$=$ 

The solution of the first equation is 

A= J${:;h}[21/$,L+fo)], to=const 

As t-CO, we obtain a selfoscillating mode with 'amplitude' A = v%. Thus, the approxi- 
mation of the solution of a sawtooth function and the averaging procedure have been substan- 
tiatedforsmallvalues of the parameter b. 
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A NEW CLASS OF EXACT SO~~JIO~S WITH SHOCK WAVES IN GAS DYNAMICS * 

S.A. POSLAVSKII 

New exact solutions of the equation of one-dimensional gas dynamics with 
strong shock waves propagating in a moving medium are obtained. The gas 
flow behind a discontinuity is described by a solution with uniform 
deformation (see /S, 2,'). Solutions of the explosion problem without a 
counterpressure in a unifarmly expanding (or compressing! gas with an 
arbitrary adiabatic exponent and a non-uniform initial density distribution 
are constructed, as well as of the problem cf cavity collapse in a dust 
cloud with the formation of a shock wave. 

The solution (see /l, 2,') was joined with the shock and detonation 
waves propagating in a quiescent gas in /3 - 6/, The problem of joining, 
by the use of the shock wave, of a solution for a moving selfgravitating 
medium with zero pressure, and the problem of selfsimilar solutions were 
discussed in /7/. An exact solution of the problem of a strong explosion 
in a uniformly expanding (or compressing) gas with a special adiabatic 
exponent equal to 5/3 was obtained in /8/. 

1, The exact particular solution of a system of equations, which describes the one- 
dimensional adiabatic motion of an ideal gas, found by L.I. Sedov, /l, 2/, can be represented 
by the formulae 

r = jri‘ (i) i, do -_ i [2~h_'(R-" + A)l'.d/, i. = \' ('i - 1) (f.fj 

(the dot denotes a derivative with respect to time t). 
Here r and 5 aretheEulerandLagrangecoordinates,Lt is thevelocity, pisthepressure, pis 

thedensity, y denotestheadiabaticexponent (v> 11, v = i, 2, 3formotionswithplane, cylindrical 
andsphericalwavesrespectively,,A, e, &,. po(Ea) arearbitraryconstants,and &,> 0, po(&)> 0, 

G (5) is an arbitrary function. By correctly selecting the Lagrangian coordinates we can 
have e= Cl. 

Let us consider the problem of joining the solution of (l.l), (1.2) with a shock wave 
which propagates in a gas with zero pressure (in a dust medium). We write the conditions at 
the discontinuity denoting the quantities in front of the shock wave by the index1,taking into 
account'that p1 = 0 and using relations (1.1) and (1.2): 

(6, = r,lR is a Lagrange coordinate of gas particles which occux at the shock wave front, and 

r* is the shock wave radius). 
The motion of the dust medium before a discontinuity is determined by the relation 
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